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Abstract-The characteristics of convection in liquid layers heated below the free surface are numerically 
studied. The mechanisms for convection are buoyancy and variation of surface tension with respect to 
temperature. Specific computations are performed to stress the influence of heat transfer at the interface 
and of interfacial viscosities. The transition between Marangoni and buoyancy regimes, when heating by 

an infinite hot wire located below the free surface, is investigated. 

1. INTRODUCTION 

THE ORIGINAL motivation of this work was to under- 
stand the instability mechanisms involved in thermal 
lens oscillations (or HBE : optical Heartbeat Experi- 
ments) observed in our laboratory (refs. [l-.5], among 
others). In these experiments, a laser beam travels 
horizontally in a ceil containing an absorbing liquid, 
near and below the free surface. When leaving the cell, 
the beam exhibits a strong divergence due to the weli- 
known phenomenon of thermal lensing f6], and 
shows, when projected onto a screen, a regular and 
contrasted ring pattern. For some laser powers 
and wire-surface distances, the ring pattern may pres- 
ent unsteady behaviour (periodic, quasi-periodic, 
chaotic). These optical features are accompanied by 
oscillatory convection in the liquid bulk and oscil- 
latory motion of the free surface. 

To approach the understanding of these phenom- 
ena, a simpler experiment has been designed in which 
heating of the liquid is carried out by means of a hot 
wire located near and below the free surface (HWE : 
Hot Wire Experiments [7-91). Critical frequencies and 
critical temperature differences at the onset,of insta- 
bility have been measured. In contrast with the case 
of HBEs which exhibit complex behaviour up to 
chaos, we only observed up to now one bifurcation 
from steady to oscillatory states in HWEs. This bifur- 
cation is identified as being a supercritical Hopf 
bifurcation. 

To theoretically explain and understand the afore- 
mentioned instability phenomena, three lines of 
research may be considered. In the first approach, we 
examined whether there could be any analogy between 
HBE/HWE and the case when an infinite horizontal 
liquid layer submitted to a vertical temperature gradi- 
ent loses its stability through a Hopf bifurcation. Ref- 
erences [IO, 111 discuss this problem when two insta- 

biiity agencies, namely surface tension and buoyancy 
effects, are simultaneously taken into account. Ref- 
erence [ 121 discusses the case when simultaneous shear 
effects are also present. Although these papers provide 
valuable results for the case of an infinite horizontal 
liquid layer submitted to a vertical temperature gradi- 
ent in its own right, they are disappointing as far as 
the understanding of HBE/HWE is concerned. For 
instance, in the horizontal liquid layer case, over- 
stability generically sets in only when the rigid wall is 
coIder than the free surface. Conversely, in 
HBE/HWE, the free surface is colder than the liquid, 
suggesting that we are faced with a somewhat different 
nature of instability. In a second approach, we 
developed a simple model relying on a physical under- 
standing of involved phenomena, dimensional anaiy- 
sis and concepts from the modern theory of non-linear 
dynamics [13-I 51. According to this model, 
HBE/HWE instabilities would result from the coup- 
ling between a mechanical oscillator associated with 
the free surface and a thermal oscillator associated 
with the heat source. Although illuminating, this 
model necessarily introduces some degree of arbi- 
trariness and, in any case, is unable to predict in detail 
ail measured quantities. In the third tine of research, 
we rely on numerical computations which are the only 
rigorous way to achieve full predictions of HBE and 
HWE data. This however leads to a numerical prob- 
lem of tremendous complexity. In this paper, we 
report on a necessary first step, namely the com- 
putation of the basic convection state in HWE, prior 
to the onset of oscillatory behaviour. 

Apart from our original motivation, a great interest 
is developed concerning combined buoyancy and 
thermocapillary flows. Various engineering systems 
such as crystal growth techniques, especially in low 
gravity environment 1161, or glass manufacturing pro- 
cesses, incorporate buoyancy and surface tension 
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NOMENCLATURE 

0 / thermal ditfusivity of the thtid Vi viscosity number 
Bi Biot number E‘, 1~ velocity components 
Ro Bond number _I’. = Cartesian coordinates 
Cri crispation number 

&5 distance between the hot wire and the free Greek symbols 

,9 
11 

Gr 
Mu 

P 
Pr 
t 
T 

surface 
gravity acceleration 
heat transfer coefficient at the free surface 
Grashof number 
Marangoni number 
pressure 
Prandtl number 
time 
temperature 

expansion factor of the fluid 
free surface deformation 
characteristic temperature difference 
intcrfacial viscosities 
thermal conductivity 
kinematic viscosity 
specific mass 
surface tension. 

mechanisms, warranting the practical interest of 
nurn~ri~al computations such as the ones presented in 
this paper. 

The paper is organised as follows. Section 2 is 
devoted to the mathematical formulation of the prob- 
lem. Section 3 discusses the calculation procedure and 
reports on validations of our code against results pub- 
lished by de Vahl Davis [17], Bergmann and Rama- 
dhyani [ 181, Kayser and Berg [19], and Napolitano et 

al. [X3]. Section 4 discusses the influence of the heat 
transfer at the interface in the case of a square pool 
with a free surface and differentially heated sidewalls. 
The influence of interfacial viscosities under the cir- 
cumstances is discussed in Section 5. Section 6 is 
devoted to the influence of coupling between buoy- 
ancy and Marangoni effects in the case of heating by 
a hot wire located below the free surface, this case 
being a direct consequence of our original nlotivation. 
Section 7 is a conclusion. 

2. MATHEMATICAL FORMULATION 

Several geometries can be studied by the computer 
code, but the case of greatest interest to us is the hot 
wire experiment. Therefore, notations are related to 
this case. The system (as shown in Fig. I), consists of 
a pool of non-volatile liquid, with a horizontal line 
source of heat located below the free surface. The 
system is taken as infinite in the direction Ox parallel 
to the line heat source and is limited by rigid walls 
equidistant from the wire on both sides of it. The Z- 
axis is vertically directed toward the free surface and 
O_r is the horizontal axis perpendicular to the wire. 
The values I: and IZ’ are the horizontal and vertical 
velocity components. The subscript 1 is used for the 
liquid and 2 for the surrounding gas. 

Due to the geometry, the liquid is assumed to be a 
ZD-Newtonian fluid. With the assumptions that the 
expansion factor CI, = - l/p,ap/a7’ and the tem- 
perature differences in the liquid are not too large, 

the Boussinesq-Oberbeck approximation applies 1211. 
With the distance 4, between the hot wire and the 
free surface as a unit of length and d,f,Jv (v, kinematic 
velocity) as a unit of time, the dimensionless governing 
equations, with dimensionless quantities indicated 
with the superscript symbol (+), read as follows. 

Continuity equation 

(1) 

Momentum equations 

(horizontal component) (2) 

(vertical component). (3) 

Fm. I Geometry of the problem 
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Energy equation 

(4) 

where p+ is the reduced dimensionless pressure 

(5) 

and 

T+ = a-,70 
0 

(6) 

where T, is a reference temperature and ST, a charac- 

teristic temperature difference of the problem (differ- 

ence between the hot wire and the temperature far 
above the free surface in the HWE-case). 

Gr and Pr are the Grashof and Prandtl numbers 

defined by, respectively 

in which aT is the thermal diffusivity of the fluid. 

Like Kayser and Berg [19], we assume that the free 
surface deformation 6z, is small with respect to dhw, 
then, for a stationary state, we have the kinematic 

condition w+ = 0 at the free surface. Furthermore the 
free surface is assumed to be a 2D-Newtonian fluid 
with negligible mass. Following Aris [22], Striven [23] 

and Striven and Sternling [24], we obtain for the nor- 

mal force balance at the free surface : 

a*(sz;) 
--Bo*6z,= Cri*Pr[-p++?g] (8) 

a,+2 

and for the tangential force balance : 
ac+ __Vii?- MaAT+ 

as+ aY 
+2 - Pr ay+ (9) 

where Bo, Cri, Vi, Ma are the Bond, crispation, 
viscosity and Marangoni numbers defined by, respec- 

tively 

K+E 
Vi = ~ 

da d,,J To 

povdiw’ 
Ma=-- 

dT POnaT 
(10) 

in which c is the surface tension of the interface and 
(K +E) is the sum of the interfacial viscosities. For most 
fluids, surface tension decreases when temperature 
increases. Therefore Ma is usually negative when 6To 
is positive. 

Another boundary condition is obtained by invok- 
ing the Newton heat transfer law at the free surface 

ar 
p= -BiT+ 
az+ 

where Bi is the Biot number: 

(11) 

in which h is the heat transfer coefficient at the free 

surface, and 1 the thermal conductivity. 
The other boundary conditions on the walls and on 

the wire take various forms, depending on the cases 
under study, such as: no-heat-flux or fixed tem- 
perature at the walls, fixed temperature or fixed heat- 
flux at the hot wire, no slip condition for the velocities 
at the walls. 

3. MAIN FEATURE OF THE CALCULATION 

PROCEDURE 

The bulk equations are solved on a rectangular 
mesh by the finite-domain method introduced by 

Patankar and Spalding [25]. The discretization of the 
bulk equations is obtained by integrating these equa- 

tions over control volumes. As usual in this method, 

the scalar variables T, p and the components of the 
velocity are located at the nodes of rectangular stag- 

gered grids for a better approximation of the convec- 
tive fluxes. A finite difference scheme performed the 

time discretization. The alternate direction method 
is used at each step of time. 

The calculation procedure is derived from the 
SIMPLE algorithm [25]. At each step of time, tem- 

perature equation (4) and momentum equations 
(2), (3) are solved by using a tridiagonal matrix algor- 

ithm, then a pressure correction is obtained from the 
continuity equation (1). Iteration on time leads to the 
stationary state of convection. The deformation of 

the free surface is obtained at the end of com- 
putations from relation (8) expressed by a finite 
difference scheme. 

Typical computational grids ranging from 25 x 25 
to 50 x 50 are used, with finer spacing near the bound- 

aries of the cavity. Computations were performed on 
SUN 3/60 workstations for the coarsest grids and on 

faster systems for the most refined ones. 
Extensive verifications of our code were performed. 

The accuracy of the bulk equations solving was tested 

by comparing our results with the bench-mark 
numerical solution from de Vahl Davis [17]. In the 

case of natural convection in a square box with differ- 

entially heated side walls. Differences on all test quan- 
tities were within 3% of the bench-mark values for 
Ra B 10’. This Ra value is higher than the values used 
for the other computations related in this paper. The 
second set of tests concerned the velocity condition 

(8). Cases with pure Marangoni convection or with 
combined buoyancy and Marangoni convection were 
investigated by Napolitano [20] or Bergmann and 
Ramadhyani [18]. We performed calculations in the 
same cases: rectangular or square liquid pools with 
differentially heated walls, with positive and negative 
Marangoni numbers, liquid pools with fixed tem- 
perature at the floor and insulated walls. The agree- 
ment between these authors and our results is very 
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FIG. 2. Pure buoyancy convectlon. Isotherms (dimensionless temperature). (a) L3i = 0. (b) Bi = 1 

satisfactory (within 1% in all cases). One of the closest 
situations to ours is related by Kayser and Berg [19]. 
A liquid pool with insulated walls is heated by means 

of a power controlled line heat source which is, 

however. located along the bottom wall instead of 

being immerged in the liquid. They study, numerically 
and experimentally, the influence of the pool depth, 
of the heating rate, of the thermal expansivity, of the 
surface tension variations and of the heat transfer 

coefficient at the interface on the free surface defor- 
mation We performed the same computations with 
the same results as Kayser and Berg. It strengthens 

our confidence for our computations in the HWE- 
cast. 

4. INFLUENCE OF THE HEAT TRANSFER AT 

THE FREE SURFACE 

Heat transfer at the free surface is characterized by 

the Biot number (12). We checked the accuracy of our 

computer code with this thermal condition at the free 
surface, by comparing our results with those from the 
finite element code MODULEF [26] in pure con- 

ductive cases (motionless) in rectangular boxes with 
differentially heated sidewalls or with a hot wire 
located below a free surface. 

To investigate the influence of an increasing Biot 
number. we performed computations for a square box 
with differentially heated sidewalls in three cases: a 
pure buoyancy-driven convection (Figs. 2 and 3), a 
combined buoyancy and Marangoni convection 
(Figs. 4 and 5) and a pure Marangoni flow (Figs. 6 
and 7). starting in each situation from a simple case. 
without heat transfer at the free surface (Bi = 0, Figs. 
227(a)), already studied by Bergman and Ramadhyani 
[ 181. In Figs. 2-7 index ‘a’ corresponds to Si = 0 and 
index ‘b’ to Bi = 1. In all cases, we have Pr = 5. In 
Figs. 2 and 3. we have Gr = 2000 and MLI = 0, in Figs. 

4 and 5, Gr = 2000, Mu = 1000, in Figs. 6 and 7. 
Gr = 0, Ma = - 1000. Bergman and Ramadhyani 

[ 181 used these values for Pr. Mu and Gr because they 
provide velocities of comparable intensity for pure 

buoyancy and for pure Marangoni flows. The left 
sidewall is the hot wall (T+ = 1) and the right is cold 

(T+ = 0). The dimensionless streamfunction is com- 
puted with a zero value at 1’ = 0, z = 0. 

As expected, the isotherms in case (b) are no longer 
orthogonal to the free surf&e and the flow intensity 

tends to decrease. This etfect and the change in the 
shape of streamlines is more important for tension- 
driven flows than for buoyancy flows. WC observed 

similar results when the liquid is heated by a hot wire. 

5. INFLUENCE OF THE VlSCOStTY NUMBER 

The interfacial viscosities appear in equation (9) 
expressing the tangential force balance at the interface 
through the viscosity number Vi. Computations were 

performed in a square box with the same conditions 
as in Section 4, for a pure Marangoni flow (Pr = 5. 
Ma = - 1000, Gr = 0) and with three viscosity num- 

bers Vi = 0, 0.1, I. The results for higher values of Vi 
are practically the same as for Vi = 1. 

Except in the vicinity of the free surface, the influ- 

ence of Vi on the flow remains very small and is not 
noticeable in buoyancy-driven flows. Figure X shows 
the influence of Vi on the free surface velocity II+ vs 
\I+. The velocity peak near the cold wall decreases 
when increasing Vi. This fact was expected, because 
the term in relation (9) representing inter-facial vis- 
cosities is proportional to the second tangential 
derivative of the surface velocity, that is to say the 
inverse of the curvature of the free surface velocity 
profile. Such an important curvature occurs only in a 
pure Mardngoni flow at the top of the velocity peak 
near the cold wall. 
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bo d7 0.1 ds ds 

(b) 
Y’ 

FIG. 3. Pure buoyancy convection. Dimensionless streamfunction. (a) Bi = 0, (b) Bi = I 

6. LIQUID LAYER HEATED FROM A HOT 

WIRE 

The case of a liquid heated by a hot wire lying at 

the floor of the pool has been experimentally and 
numerically studied by Kayser and Berg [19]. The 
system was limited by vertical thermally insulated 
walls and the wire is located in the middle of the floor. 

The rate of energy supplied from the line source is 
constant. Kayser and Berg show that a transition 
occurs in the concavity of the free surface defor- 
mation, depending on the depth of the liquid layer. 

Concave (depressed) profiles are produced in the shal- 
lower pools when the flow is dominated by surface 
tension gradients and convex (elevated) profiles in the 

deeper pools when the flow is dominated by buoyancy. 

(4 

They also show that the thermal expansivity c(, (occur- 
ring in Gu) and the temperature coefficient of surface 

tension &/ar(occurring in Mu) are the primary deter- 
miners of the shape of the surface profile, while bulk 

viscosity and surface tension had only secondary 
effects. We performed computations in similar cases 
and our results are in agreement with Kayser and 

Berg. 
The HWE-problem is slightly different. There the 

hot wire is no longer located on the floor of the pool, 
but at various distances between the floor and the free 
surface and its temperature is fixed. Another differ- 
ence in our case is that the walls are at a fixed tem- 

perature. Computations were made for different 
liquids and depths of the hot wire in liquid pools of 

various dimensions. Concerning the influence of the 

T' 

FIG. 4. Combined buoyancy and Marangoni convection. Isotherms (dimensionless temperature). (a) Bi = 0, 
(b)Bi= I. 
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FG. 5. Combined buoyancy and Marangoni convection. Dimensionless streamfunction. (a) Bi = 0. (h) 
Bi= 1. 

thermophysical parameters, our conclusions are 
the same as Kayser and Berg’s We are showing here 
examples of compu~tions concerning silicon oil (200 
es Dow-Corning Series) with the following thermo- 
physical properties: at 20-C: p = 971 kg m‘ j, 
Cp = 1.484 x 10’ J kg ’ K- ‘, ti = 0.01942 kg m- ’ 
s-l, i = 0.1546 W rn.. ’ K -‘, 0 = 21 x 10M3 N n-.I. 
do/dT= -69 x 10” N m ’ I(- I, r,, = 0.37x 10’ 
K ‘. The temperature difference between the hot wire 
and the free surface is O.l,‘C. The distance between 
the walls and the wire is four times the distance 
between the wire and the free surface. 

We performed computations for d= 1 cm and 
Ir,,, = 0.5 cm. Figure 9 shows the isotherms for d,,," = 
1 cm. Since the solutions are symmetric about the 
vertical centreline of the cavity, computations were 

T+ 

performed only in the right half of the pool. ‘The hot 
wire is located at z+ = 3.0 at the left of the figure. The 
isotherms are not presented for Ir,, --I 0.5 cm, because 
they are not very different from the previous cast, 
because the heat transfer in the layer is essentially due 
to the important viscosity of the fluid. Figure 10 shows 
the streamfunction for & = 1 cm and Fig. II for 

4, = 0.5 cm. fn the first case, we have essentially a 
buoyancy-driven flow with the streamlines approxi- 
mately centred in the middle of the liquid pool. In the 
second case, we have a ~arangoni-drive flow. As for 
the flow in a cavity with differentially heated sidewalls. 
the streamlines are concentrated near the free surface 
and nea; the cold wall with a peak in the free surface 
velocity. We fmd that, even for small temperature 
differcnc.es. the free surface deformation is not small 

T’ 

FIG. 6. Pure Marangoni convection. Isotherms (dimensionless temperature). (a) &’ = 0, fb) i3i = I. 
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Fto, 7. Pure Marangoni canv~ctio~~ dimensionless sf~a~lfu~ctjon. (a) Bi = 0, (B) Bi = I. 

0 .2 .4 .6 .8 1 
Y* 

Fto. 8. Influence of the viscosity number on the free surface 
velocity. D~n~ens~onless free surface velocity vs dimensionless 

distance. 

FIG. 9. Liquid pool heated from a hot wire. isotherms 
(dimensionless temperature). 

with fespect to dhwr therefore r&&ion (8) is no tonger 
valid to obtain the surface profile in the case under 
study. We have to refine our model for the free suc- 
face to be in better agreement with experimental 
problems. 

7. CONCLUSIONS 

Combined buoyancy- and surface tension-Dresden 
flows have been simulated for a Iiquid layer with a 
free surface. Heat transfer at the free surface tends to 
decrease fluid velocity, especially for pure tension- 
driven flows. The influence of interfacial viscosities is 
only ~oti~abIe in the vicinity of’ the free surface and, 
in the most practicai cases, is negligible. The computer 
code is now able to simulate the flow and the tem- 

f%~ IO. Liquid pool heated from a hot wire, dhvv = 1 cm. 
Dimensionless strc~mfunction. 



Ftt;. I I. Liquid pool heated from a hot wire, 4;, = 0.5 cm. 
Dimensionless streamfunction. 

perature field in a iiquid layer heated from a hot wire 

located at various distances from the free surface. An 
example of computations is presented for silicon oil, 
showing the transition between Marangoni and buoy- 
ancy regimes. However, more etfort is required to 
predict instability characteristics observed in HWEs 
and HBEs. From that point of view, these experiments 
provide severe test-cases to assess the possibilities of 
more sophisticated codes devoted to the computations 
of surface tension- and buoyancy-driven flows. 
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SIMULATION NUMERIQUE DUNE CONVECTION CONDUITE PAR LA TENSION 
INTERFACIALE ET LES FORCES DE FLOTTEMENT DANS UNE COUCHE 

LIQUIDE CHAUFFEE PAR UN FIL CHAUD 

RCsum&On &die numeriquement les caracteristiques de la convection dans des couches liquides chauffees 
sous la surface libre. Les mecanismes de la convection sont le flottement et la variation de tension interfaciale 
vi&-vis de la temperature. Des calculs specifiques sont conduits pour connaitre l’influence du transfert 
thermique g l’interface et des viscositb interfaciales. On etudie la transition entre les regimes de Marangoni 

et de flottement lorsque le chauffage est rtalise par un fil chaud infini loge sous la surface libre. 

NUMERISCHE SIMULATION DER GEMISCHTEN OBERFLACHENSPANNUNGS- UND 
AUFTRIEBSINDUZIERTEN KONVEKTION IN EINER DURCH EINEN DRAHT 

BEHEIZTEN FLUSSIGKEITSSCHICHT 

Zusammenfassung-Die Eigenschaften der Konvektion in einer Fliissigkeitsschicht, die unterhalb der freien 
Oberflache beheizt wird, werden numerisch untersucht. Die Konvektionsstriimung wird durch Auftrieb 
und durch temperaturbedingte Unterschiede der Oberhichenspannung induziert. Besondere Berechnungen 
werden ausgefiihrt, urn den EinfluD des Warmehbergangs an der Grenzflache und der Grenzflachen- 
viskositat zu betonen. Zusitzlich wird der Ubergang zwischen dem marangonigesteuerten und dem 
auftreibsgesteuerten Bereich fur eine Beheizung durch einen unendlich langen Draht unterhalb der freien 

Oberflache untersucht. 

~MCJIEHHOE MO~EJIRPOBAHBE KOHBEKLJHM 3A CYET HOBEPXHOCTHOL-0 
HATRIEHkHl ki HOAbEMHbIX CHJI B IKMAKOM CJIOE, HAFPEBAEMOM 

lIPDBOJIOK0~ 

AuaoTaams-%icnemio nccneayr0Tca xapaxrepricrnxn X~HB~KUHH a x0i,amix cnonx c narpeaaeMo5 
CSn3y CB060nHOti nOBepXH0CrbI0. KOHBeKmIIR 06ycnoBneHa lIOnbeMHMMB CSiJlaMIi U W3MeHeHHeM 
nOBepXHOmHOr0 riaramremia c rebmeparypoii. Hp0~0~01~ca pacgerbr c uenbm ycratioanemia B~~HWR 

rennonepenoca w aasrtocreti na rpanmre pasnena. Hccnenyercn nepexon Memqy ~~JKHMOM Mapanrotm 
a TeYemieM, o6ycnoanennbrM rroRbebnibr~~ CnnaMA npw Harpese 6ecKoHewoii npoBonoxoti, pacnono- 

XCeHHOiiIIOnCB060J@iOfi nObb?pXHOCrbm. 


